TWO-SCALE CONVERGENCE FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS
نویسندگان
چکیده
منابع مشابه
Pointwise Two-scale Expansion for Parabolic Equations with Random Coefficients
We investigate the first-order correction in the homogenization of linear parabolic equations with random coefficients. In dimension 3 and higher and for coefficients having a finite range of dependence, we prove a pointwise version of the two-scale expansion. A similar expansion is derived for elliptic equations in divergence form. The result is surprising, since it was not expected to be true...
متن کاملStochastic differential equations with random coefficients
In this paper we establish the existence and uniqueness of a solution for different types of stochastic differential equation with random initial conditions and random coefficients. The stochastic integral is interpreted as a generalized Stratonovich integral, and the techniques used to derive these results are mainly based on the path properties of the Brownian motion, and the definition of th...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Two-scale Finite Element Discretizations for Partial Differential Equations ∗1)
Some two-scale finite element discretizations are introduced for a class of linear partial differential equations. Both boundary value and eigenvalue problems are studied. Based on the two-scale error resolution techniques, several two-scale finite element algorithms are proposed and analyzed. It is shown that this type of two-scale algorithms not only significantly reduces the number of degree...
متن کاملStrong and weak error estimates for the solutions of elliptic partial differential equations with random coefficients
We consider the problem of numerically approximating the solution of an elliptic partial di erential equation with random coe cients and homogeneous Dirichlet boundary conditions. We focus on the case of a lognormal coe cient, we have then to deal with the lack of uniform coercivity and uniform boundedness with respect to the randomness. This model is frequently used in hydrogeology. We approxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications of the Korean Mathematical Society
سال: 2003
ISSN: 1225-1763
DOI: 10.4134/ckms.2003.18.3.559