Two-Stage Estimation for Seemingly Unrelated Nonparametric Regression Models
نویسندگان
چکیده
منابع مشابه
Efficient Semiparametric Seemingly Unrelated Quantile Regression Estimation
We propose an efficient semiparametric estimator for the coefficients of a multivariate linear regression model — with a conditional quantile restriction for each equation — in which the conditional distributions of errors given regressors are unknown. The procedure can be used to estimate multiple conditional quantiles of the same regression relationship. The proposed estimator is asymptotical...
متن کاملBayesian nonparametric sparse seemingly unrelated regression model (SUR)∗
Seemingly unrelated regression (SUR) models are useful in studying the interactions among different variables. In a high dimensional setting or when applied to large panel of time series, these models require a large number of parameters to be estimated and suffer of inferential problems. To avoid overparametrization and overfitting issues, we propose a hierarchical Dirichlet process prior for ...
متن کاملBayesian Geoadditive Seemingly Unrelated Regression
Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...
متن کاملEstimation of Regression Model Using a Two Stage Nonparametric Approach
Based on the empirical or theoretical qualitative information about the relationship between response variable and covariates, we propose a new approach to model polynomial regression using a shape restricted regression after estimating the direction by sufficient dimension reduction. The purpose of this paper is to illustrate that in the absence of prior information other than the shape constr...
متن کاملNonparametric Survey Regression Estimation in Two-Stage Spatial Sampling
A nonparametric model-assisted survey estimator for status estimation based on local polynomial regression is extended to incorporate spatial auxiliary information. Under mild assumptions, this estimator is design-unbiased and consistent. Simulation studies show that the nonparametric regression estimator is competitive with standard parametric techniques when a parametric specification is corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Systems Science and Complexity
سال: 2007
ISSN: 1009-6124,1559-7067
DOI: 10.1007/s11424-007-9048-8