Two-step graphs of trees
نویسندگان
چکیده
منابع مشابه
Roman domination excellent graphs: trees
A Roman dominating function (RDF) on a graph $G = (V, E)$ is a labeling $f : V rightarrow {0, 1, 2}$ suchthat every vertex with label $0$ has a neighbor with label $2$. The weight of $f$ is the value $f(V) = Sigma_{vin V} f(v)$The Roman domination number, $gamma_R(G)$, of $G$ is theminimum weight of an RDF on $G$.An RDF of minimum weight is called a $gamma_R$-function.A graph G is said to be $g...
متن کاملA Characterization of Graphs with Interval Two-Step Graphs
Dedicated by the other authors to Professor John Maybee on the occasion of his 65th birthday. Abstract. One of the intriguing open problems on competition graphs is determining what digraphs have interval competition graphs. This problem originated in the work of Cohen 5, 6] on food webs. In this paper we consider this problem for the class of loopless symmetric digraphs. The competition graph ...
متن کاملThe 3-path-step Operator on Trees and Unicyclic Graphs
E.Prisner in his book Graph Dynamics defines the k-path-step operator on the class of finite graphs. The k-path-step operator (for a positive integer k) is the operator S′ k which to every finite graph G assigns the graph S′ k(G) which has the same vertex set as G and in which two vertices are adjacent if and only if there exists a path of length k in G connecting them. In the paper the trees a...
متن کاملCounting Two-graphs Related to Trees
In an earlier paper, I showed that the classes of pentagon-free two-graphs and of pentagon-and-hexagon-free two-graphs could be represented in terms of trees. This paper gives formulae for the numbers of labelled objects in each of these classes, as well as the numbers of labelled reduced two-graphs in each class. The proofs use various enumeration results for trees. At least some of these resu...
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1993
ISSN: 0012-365X
DOI: 10.1016/0012-365x(93)90122-a