Ultrafilter extensions do not preserve elementary equivalence

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafilter Extensions for Coalgebras

This paper studies finitary modal logics as specification languages for Set-coalgebras (coalgebras on the category of sets) using Stone duality. It is wellknown that Set-coalgebras are not semantically adequate for finitary modal logics in the sense that bisimilarity does not in general coincide with logical equivalence. Stone-coalgebras (coalgebras over the category of Stone spaces), on the ot...

متن کامل

On certain semigroups of transformations that preserve double direction equivalence

Let TX be the full transformation semigroups on the set X. For an equivalence E on X, let TE(X) = {α ∈ TX : ∀(x, y) ∈ E ⇔ (xα, yα) ∈ E}It is known that TE(X) is a subsemigroup of TX. In this paper, we discussthe Green's *-relations, certain *-ideal and certain Rees quotient semigroup for TE(X).

متن کامل

The first order formulas preserved under ultrafilter extensions are not recursively enumerable

Proof: By assumption, φinf is preserved under ultrafilter extensions. The second conjunct of θ, i.e., ∀xy.(x = y → Rxy) is also preserved under ultrafilter extension, since it is modally definable using global modality. Finally, consider the third conjunct of θ. From the fact that M |= ∀xy.(x = y → Rxy), we can derive that the denotation of R in ueM includes all pairs of ultrafilters (u, v) suc...

متن کامل

On Selection Functions that Do Not Preserve Normality

The sequence selected from a sequence R(0)R(1) . . . by a language L is the subsequence of all bits R(n + 1) such that the prefix R(0) . . . R(n) is in L. By a result of Agafonoff [1], a sequence is normal if and only if any subsequence selected by a regular language is again normal. Kamae and Weiss [11] and others have raised the question of how complex a language must be such that selecting a...

متن کامل

Notes from Lecture 4: Ultrafilter Extensions and the Standard Translation

u1 = {Z | there are finitely many sets X1, . . . Xk such that Z = X1 ∩ · · · ∩Xk}. That is, u1 is the set of finite intersections of sets from u0. Note that u0 ⊆ u1, since u0 has the finite intersection property, we have ∅ 6∈ u1, and by definition u1 is closed under finite intersections. Now, define u2 as follows: u′ = {Y | there is a Z ∈ u1 such that Z ⊆ Y } ∗UMD, Philosophy. Webpage: ai.stanf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Logic Quarterly

سال: 2019

ISSN: 0942-5616,1521-3870

DOI: 10.1002/malq.201900045