Unbounded generalization of logarithmic representation of infinitesimal generators

نویسندگان

چکیده

The logarithmic representation of infinitesimal generators is generalized to the cases when evolution operator unbounded. result applicable unbounded operators, where unboundedness an essential ingredient nonlinear analysis. In conclusion a general framework for identification between with operators established. A mathematical such indispensable rigorous treatment transforms: e.g., transforms appearing in theory integrable systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

Comparison of Markov processes via infinitesimal generators

We derive comparison results for Markov processes with respect to stochastic orderings induced by function classes. Our main result states that stochastic monotonicity of one process and comparability of the infinitesimal generators implies ordering of the processes. Unlike in previous work no boundedness assumptions on the function classes are needed anymore. We also present an integral versio...

متن کامل

On Landau’s type inequalities for infinitesimal generators∗

We consider Landau’s type inequalities of the form ‖Aku‖n ≤ Cn,k‖u‖n−k‖Anu‖k, u ∈ D(A), 0 < k < n, where A is the infinitesimal generator of either a strongly continuous semigroup or a strongly continuous cosine function of linear contractions on a Banach space X. The constants Cn,k are computed for n ≤ 6.

متن کامل

Direct Image of Logarithmic Complexes and Infinitesimal Invariants of Cycles

We show that the direct image of the filtered logarithmic de Rham complex is a direct sum of filtered logarithmic complexes with coefficients in variations of Hodge structures, using a generalization of the decomposition theorem of Beilinson, Bernstein and Deligne to the case of filtered D-modules. As a corollary, we get the total infinitesimal invariant of a (higher) cycle in a direct sum of t...

متن کامل

Infinitesimal Generators Associated with Semigroups of Linear Fractional Maps

We characterize the infinitesimal generator of a semigroup of linear fractional self-maps of the unit ball in C, n ≥ 1. For the case n = 1 we also completely describe the associated Koenigs function and we solve the embedding problem from a dynamical point of view, proving, among other things, that a generic semigroup of holomorphic self-maps of the unit disc is a semigroup of linear fractional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in The Applied Sciences

سال: 2023

ISSN: ['1099-1476', '0170-4214']

DOI: https://doi.org/10.1002/mma.9002