Understanding the DayCent model: Calibration, sensitivity, and identifiability through inverse modeling

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the DayCent model: Calibration, sensitivity, and identifiability through inverse modeling

The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and impro...

متن کامل

Optimality, identifiability, and sensitivity

Around a solution of an optimization problem, an “identifiable” subset of the feasible region is one containing all nearby solutions after small perturbations to the problem. A quest for only the most essential ingredients of sensitivity analysis leads us to consider identifiable sets that are “minimal”. This new notion lays a broad and intuitive variational-analytic foundation for optimality c...

متن کامل

Improving Identifiability in Model Calibration Using Multiple Responses

In physics-based engineering modeling, the two primary sources of model uncertainty, which account for the differences between computer models and physical experiments, are parameter uncertainty and model discrepancy. Distinguishing the effects of the two sources of uncertainty can be challenging. For situations in which identifiability cannot be achieved using only a single response, we propos...

متن کامل

Understanding Document Analysis and Understanding (through Modeling)

We turn to the viewpoint of users of a DAU system. Out of the view of users we sketch a picture of “Document Analysis and Understanding” (DAU), only a simple division of DAU into six sub-tasks, and consider this a model of DAU. We provide one elaborate example of a use of the model: the module design of the commercially successful DAU system smartFIX. We argue that such modeling of DAU can be o...

متن کامل

Identifiability Scaling Laws in Bilinear Inverse Problems

A number of ill-posed inverse problems in signal processing, like blind deconvolution, matrix factorization, dictionary learning and blind source separation share the common characteristic of being bilinear inverse problems (BIPs), i.e. the observation model is a function of two variables and conditioned on one variable being known, the observation is a linear function of the other variable. A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Environmental Modelling & Software

سال: 2015

ISSN: 1364-8152

DOI: 10.1016/j.envsoft.2014.12.011