Underwater Loop-Closure Detection for Mechanical Scanning Imaging Sonar by Filtering the Similarity Matrix With Probability Hypothesis Density Filter

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trajectory probability hypothesis density filter

This paper presents the probability hypothesis density (PHD) filter for sets of trajectories. The resulting filter, which is referred to as trajectory probability density filter (TPHD), is capable of estimating trajectories in a principled way without requiring to evaluate all measurement-to-target association hypotheses. As the PHD filter, the TPHD filter is based on recursively obtaining the ...

متن کامل

Vehicle Detection Based on Probability Hypothesis Density Filter

In the past decade, the developments of vehicle detection have been significantly improved. By utilizing cameras, vehicles can be detected in the Regions of Interest (ROI) in complex environments. However, vision techniques often suffer from false positives and limited field of view. In this paper, a LiDAR based vehicle detection approach is proposed by using the Probability Hypothesis Density ...

متن کامل

Unscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters

The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...

متن کامل

Multiple Target Tracking with The Probability Hypothesis Density Filter

The random-set framework for multiple target tracking offers a distinct alternative to the traditional approach to multiple target tracking by treating the collections of individual targets and observations as finite-sets. The multi-target state is predicted and updated recursively based on the set-valued observation. The complexity of computing the multi-target recursion grows exponentially wi...

متن کامل

Computation-distributed probability hypothesis density filter

Particle probability hypothesis density filtering has become a promising approach for multi-target tracking due to its capability of handling an unknown and time-varying number of targets in a nonlinear, non-Gaussian system. However, its computational complexity linearly increases with the number of obtained observations and the number of particles, which can be very time consuming, particularl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2952445