Uniform bound for Hecke L-functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Explicit Formula for Hecke L-functions

In this paper an explicit formula is given for a sequence of numbers. The positivity of this sequence of numbers implies that zeros in the critical strip of the Euler product of Hecke polynomials, which are associated with the space of cusp forms of weight k for Hecke congruence subgroups, lie on the critical line.

متن کامل

(Almost) primitivity of Hecke L-functions

Let f be a cusp form of the Hecke space M0(λ, k, ) and let Lf be the normalized L-function associated to f . Recently it has been proved that Lf belongs to an axiomatically defined class of functions S̄. We prove that when λ ≤ 2, Lf is always almost primitive, i.e., that if Lf is written as product of functions in S̄, then one factor, at least, has degree zeros and hence is a Dirichlet polynomial...

متن کامل

Effective Nonvanishing of Canonical Hecke L-functions

Motivated by work of Gross, Rohrlich, and more recently Kim, Masri, and Yang, we investigate the nonvanishing of central values of L-functions of “canonical” weight 2k−1 Hecke characters for Q( √ −p), where 3 < p ≡ 3 (mod 4) is prime. Using the work of Rodriguez-Villegas and Zagier, we show that there are nonvanishing central values provided that p ≥ 6.5(k−1) and (−1) ( 2 p ) = 1. Moreover, we ...

متن کامل

On the Bloch-kato Conjecture for Hecke L-functions

Let K be an imaginary quadratic eld and let O K be the ring of integers of K. Let E be an elliptic curve deened over Q with complex multiplication by O. Let be the Grr ossencharacter attached to the curve E over K by the theory of complex multiplication and let be the conjugate character. For k > j > 0, k ?j is a Grr ossencharacter. We will study p? part of the conjecture of Bloch-Kato for the ...

متن کامل

Explicit Formulas for Dirichlet and Hecke L-functions

In 1997, the author proved that the Riemann hypothesis holds if and only if λn = ∑ [1−(1−1/ρ)n] > 0 for all positive integers n, where the sum is over all complex zeros of the Riemann zeta function. In 1999, E. Bombieri and J. Lagarias generalized this result and obtained a remarkable general theorem about the location of zeros. They also gave an arithmetic interpretation for the numbers λn. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica

سال: 2005

ISSN: 0001-5962

DOI: 10.1007/bf02588051