Uniform stability for one-dimensional delay-differential equations with dominant delayed term
نویسندگان
چکیده
منابع مشابه
Asymptotic Stability for one Dimensional Differential-Delay Equations*
G? = (4 E c* : II d II < PI. I f ~(a) is defined and continuous on [t q, t], we will write xt for the function for which x~(s) = x(t + S) for s E [-q, 01. Hence xt E C, . This paper shows that for a nonlinear one-dimensional differential delay equation a(t) = F;(t, x1(.)) (DDE) one can frequently determine (almost by inspection) if the 0 solution is asymptotically stable and give a region of at...
متن کاملStability and Hopf Bifurcation in Differential Equations with One Delay
A class of parameter dependent differential equations with one delay is considered. A decomposition of the parameter space into domains where the corresponding characteristic equation has a constant number of zeros with positive real part is provided. The local stability analysis of the zero solution and the computation of all Hopf bifurcation points with respect to the delay is given.
متن کاملStability in a Three-dimensional System of Delay-differential Equations
The stability properties of the null solution of the three-dimensional linear system x = -x(t) +Ax(t -T) are investigated. When all the diagonal entries of the matrix A are zero, the values of the parameters (remaining entries in the matrix A and the time-delay T) for which this solution is asymptotically stable are explicitly determined. The relation of this result to neural network models is ...
متن کاملStability analysis of impulsive fuzzy differential equations with finite delayed state
In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...
متن کاملRazumikhin-Type Stability Criteria for Differential Equations with Delayed Impulses.
This paper studies stability problems of general impulsive differential equations where time delays occur in both differential and difference equations. Based on the method of Lyapunov functions, Razumikhin technique and mathematical induction, several stability criteria are obtained for differential equations with delayed impulses. Our results show that some systems with delayed impulses may b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 1989
ISSN: 0040-8735
DOI: 10.2748/tmj/1178227821