Uniformly counting rational points on conics

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Rational Points on Hypersurfaces

For any n ≥ 2, let F ∈ Z[x1, . . . , xn] be a form of degree d ≥ 2, which produces a geometrically irreducible hypersurface in P. This paper is concerned with the number N(F ; B) of rational points on F = 0 which have height at most B. For any ε > 0 we establish the estimate N(F ; B) = O(B), whenever either n ≤ 5 or the hypersurface is not a union of lines. Here the implied constant depends at ...

متن کامل

Counting Rational Points on Algebraic Varieties

In these lectures we will be interested in solutions to Diophantine equations F (x1, . . . , xn) = 0, where F is an absolutely irreducible polynomial with integer coefficients, and the solutions are to satisfy (x1, . . . , xn) ∈ Z. Such an equation represents a hypersurface in A, and we may prefer to talk of integer points on this hypersurface, rather than solutions to the corresponding Diophan...

متن کامل

Counting Rational Points on K3 Surfaces

For any algebraic variety X defined over a number field K, and height functionHD onX corresponding to an ample divisorD, one can define the counting functionNX,D(B) = #{P ∈ X(K) | HD(P ) ≤ B}. In this paper, we calculate the counting function for hyperelliptic K3 surfaces X which admit a generically two-to-one cover of P1 × P1 branched over a singular curve. In particular, we effectively constr...

متن کامل

Counting Rational Points on Ruled Varieties

In this paper, we prove a general result computing the number of rational points of bounded height on a projective variety V which is covered by lines. The main technical result used to achieve this is an upper bound on the number of rational points of bounded height on a line. This upper bound is such that it can be easily controlled as the line varies, and hence is used to sum the counting fu...

متن کامل

Counting Rational Points on Algebraic Varieties

For any N ≥ 2, let Z ⊂ P be a geometrically integral algebraic variety of degree d. This paper is concerned with the number NZ(B) of Q-rational points on Z which have height at most B. For any ε > 0 we establish the estimate NZ(B) = Od,ε,N (B ), provided that d ≥ 6. As indicated, the implied constant depends at most upon d, ε and N . Mathematics Subject Classification (2000): 11G35 (14G05)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2014

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa166-1-1