Unique solvability of numerical methods for stiff delay- integro-differential equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical method for solving delay-fractional differential and integro-differential equations

‎This article develops a direct method for solving numerically‎ ‎multi delay-fractional differential and integro-differential equations‎. ‎A Galerkin method based on Legendre polynomials is implemented for solving‎ ‎linear and nonlinear of equations‎. ‎The main characteristic behind this approach is that it reduces such problems to those of‎ ‎solving a system of algebraic equations‎. ‎A conver...

متن کامل

Numerical Treatments for Volterra Delay Integro-differential Equations

This paper presents a new technique for numerical treatments of Volterra delay integro-differential equations that have many applications in biological and physical sciences. The technique is based on the mono-implicit Runge — Kutta method (described in [12]) for treating the differential part and the collocation method (using Boole’s quadrature rule) for treating the integral part. The efficie...

متن کامل

Numerical methods for a class of nonlinear integro-differential equations

In a previous article (Glowinski, J. Math. Anal. Appl. 41, 67–96, 1973) the first author discussed several methods for the numerical solution of nonlinear equations of the integro-differential type with periodic boundary conditions. In this article we discuss an alternative methodology largely based on the Strang’s symmetrized operator-splitting scheme. Several numerical experiments suggest tha...

متن کامل

Numerical Methods for Evolution and Stationary (Integro-)Differential Equations

This study-research project is about numerical methods of differential equations (ordinary differential equations (ODE), partial differential equation (PDE), and integro-differential equations (IDE).) Required courses for this project are Math 212/213 (Multivariable Calculus), Math 302 (Differential Equations); and additional training in Math 345 (Introduction in Mathematical Biology), Math 413...

متن کامل

Quintic C-Spline Collocation Methods for Stiff Delay Differential Equations

In this paper, a new difference scheme based on C1-quintic splines is derived for the numerical solution of the stiff delay differential equations. Convergence results shows that the methods have a convergence of order five. Moreover, the stability analysis properties of these methods have been studied. Finally, numerical results illustrating the behavior of the methods when faced with some dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Integral Equations and Applications

سال: 2010

ISSN: 0897-3962

DOI: 10.1216/jie-2010-22-4-631