Uniqueness of Haar series which are $(C,\,1)$ summable to Denjoy integrable functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which Powers of Holomorphic Functions Are Integrable?

Question 1. Let f(z1, . . . , zn) be a holomorphic function on an open set U ⊂ C. For which t ∈ R is |f |t locally integrable? The positive values of t pose no problems, for these |f |t is even continuous. If f is nowhere zero on U then again |f |t is continuous for any t ∈ R. Thus the question is only interesting near the zeros of f and for negative values of t. More generally, if h is an inve...

متن کامل

Which Haar graphs are Cayley graphs?

For a finite group G and subset S of G, the Haar graph H(G,S) is a bipartite regular graph, defined as a regular G-cover of a dipole with |S| parallel arcs labelled by elements of S. If G is an abelian group, then H(G,S) is well-known to be a Cayley graph; however, there are examples of non-abelian groups G and subsets S when this is not the case. In this paper we address the problem of classif...

متن کامل

Semigroups in which all strongly summable ultrafilters are sparse

We show that if (S,+) is a commutative semigroup which can be embedded in the circle group T, in particular if S = (N,+), then all nonprincipal, strongly summable ultrafilters on S are sparse and can be written as sums in βS only trivially. We develop a simple condition on a strongly summable ultrafilter which guarantees that it is sparse and show that this holds for many ultrafilters on semigr...

متن کامل

Integrals and Summable Trigonometric Series

is that of suitably defining a trigonometric integral with the property that, if the series (1.1) converges everywhere to a function ƒ(x), then f(x) is necessarily integrable and the coefficients, an and bn, given in the usual Fourier form. It is well known that a series may converge everywhere to a function which is not Lebesgue summable nor even Denjoy integrable (completely totalisable, [3])...

متن کامل

Minimization of Haar wavelet series and Haar spectral decision diagrams for discrete functions

In this paper, a minimization of Haar wavelet series for simplification of circuits and Haar based decision diagrams representing discrete multiple-valued functions is proposed. The minimization is performed by permutation of indices of generalized Haar functions. Experimental results show that this method provides reasonable reduction in the number of non-zero coefficients. The Haar series red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1973

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1973-0312142-8