UNIT AND UNITARY CAYLEY GRAPHS FOR THE RING OF EISENSTEIN INTEGERS MODULO \(n\)

نویسندگان

چکیده

Let \({E}_{n}\) be the ring of Eisenstein integers modulo \(n\). We denote by \(G({E}_{n})\) and \(G_{{E}_{n}}\), unit graph unitary Cayley \({E}_{n}\), respectively. In this paper, we obtain value diameter, girth, clique number chromatic these graphs. also prove that for each \(n>1\), graphs \(G(E_{n})\) \(G_{E_{n}}\) are Hamiltonian.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Restricted Unitary Cayley Graphs and Symplectic Transformations Modulo n

We present some observations on a restricted variant of unitary Cayley graphs modulo n, and implications for a decomposition of elements of symplectic operators over the integers modulo n. We define quadratic unitary Cayley graphs Gn, whose vertex set is the ring Zn, and where residues a, b modulo n are adjacent if and only if their difference is a quadratic residue. By bounding the diameter of...

متن کامل

ON THE REFINEMENT OF THE UNIT AND UNITARY CAYLEY GRAPHS OF RINGS

Let $R$ be a ring (not necessarily commutative) with nonzero identity. We define $Gamma(R)$ to be the graph with vertex set $R$ in which two distinct vertices $x$ and $y$ are adjacent if and only if there exist unit elements $u,v$ of $R$ such that $x+uyv$ is a unit of $R$. In this paper, basic properties of $Gamma(R)$ are studied. We investigate connectivity and the girth of $Gamma(R)$, where $...

متن کامل

Computing Wiener and hyper–Wiener indices of unitary Cayley graphs

The unitary Cayley graph Xn has vertex set Zn = {0, 1,…, n-1} and vertices u and v are adjacent, if gcd(uv, n) = 1. In [A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881–1889], the energy of unitary Cayley graphs is computed. In this paper the Wiener and hyperWiener index of Xn is computed.

متن کامل

The Ring of Integers, Euclidean Rings and Modulo Integers

The binary operation multint on Z is defined as follows: (Def. 1) For all elements a, b of Z holds (multint)(a, b) = ·R(a, b). The unary operation compint on Z is defined as follows: (Def. 2) For every element a of Z holds (compint)(a) = −R(a). The double loop structure INT.Ring is defined by: (Def. 3) INT.Ring = 〈Z, +Z,multint, 1(∈ Z), 0(∈ Z)〉. Let us mention that INT.Ring is strict and non em...

متن کامل

On Unitary Cayley Graphs

AssrRAcr. We deal with a family of undirected Cayley graphs X. which are unions of disjoint Hamilton cycles, and some of their properties, where rz runs over the positive integers. It is proved that X-is a bipartite graph when n is even. If n is an odd number, we count the number of different colored triangles in Xn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ural mathematical journal

سال: 2021

ISSN: ['2414-3952']

DOI: https://doi.org/10.15826/umj.2021.2.003