Unitarily Invariant Metrics on the Grassmann Space
نویسندگان
چکیده
منابع مشابه
Unitarily Invariant Metrics on the Grassmann Space
Let Gm,n be the Grassmann space of m-dimensional subspaces of F. Denote by θ1(X ,Y), . . . , θm(X ,Y) the canonical angles between subspaces X ,Y ∈ Gm,n. It is shown that Φ(θ1(X ,Y), . . . , θm(X ,Y)) defines a unitarily invariant metric on Gm,n for every symmetric gauge function Φ. This provides a wide class of new metrics on Gm,n. Some related results on perturbation and approximation of subs...
متن کاملInequalities for unitarily invariant norms
This paper aims to discuss some inequalities for unitarily invariant norms. We obtain several inequalities for unitarily invariant norms.
متن کاملSome Inequalities for Unitarily Invariant Norms
This paper aims to present some inequalities for unitarily invariant norms. In section 2, we give a refinement of the Cauchy-Schwarz inequality for matrices. In section 3, we obtain an improvement for the result of Bhatia and Kittaneh [Linear Algebra Appl. 308 (2000) 203-211]. In section 4, we establish an improved Heinz inequality for the Hilbert-Schmidt norm. Finally, we present an inequality...
متن کاملTian’s invariant of the Grassmann manifold
— We prove that Tian’s invariant on the complex Grassmann manifold Gp,q(C ) is equal to 1/(p + q). The method introduced here uses a Lie group of holomorphic isometries which operates transitively on the considered manifolds and a natural imbedding of ( P(C ) )p in Gp,q(C ). Résumé. — On prouve que l’invariant de Tian sur la grassmannienne Gp,q(C ) est 1/(p+ q). La méthode présentée dans cet ar...
متن کاملSubmultiplicativity Vs Subadditivity for Unitarily Invariant Norms
Let A,B be nonzero positive semidefinite matrices. We prove that ‖AB‖ ‖A‖ ‖B‖ ≤ ‖A + B‖ ‖A‖+ ‖B‖ , ‖A ◦B‖ ‖A‖ ‖B‖ ≤ ‖A + B‖ ‖A‖+ ‖B‖ for any unitarily invariant norm with ‖diag(1, 0, . . . , 0)‖ ≥ 1. Some related inequalities are derived. AMS classification: 15A60, 15A45
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2005
ISSN: 0895-4798,1095-7162
DOI: 10.1137/040607605