Universal Coding for Classical-Quantum Channel

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal coding for classical-quantum channel

We construct a universal code for stationary and memoryless classicalquantum channel as a quantum version of the universal coding by Csiszár and Körner. Our code is constructed by the combination of irreducible representation, the decoder introduced through quantum information spectrum, and the packing lemma.

متن کامل

Gallager Bound of Classical-Quantum Channel Coding

Gallager bound is known as the minimum upper bound of average error probability of classical channel coding[5]. Burnashev and Holevo[8] derived its quantum version in the pure states case, and proposed its quantum version in the mixed states case. The attainability of their quantum version has been an open problem, We prove that the bound proposed by them can be attained by a POVM proposed by H...

متن کامل

Strong converse exponent for classical-quantum channel coding

Milán Mosonyi 2, 3, ∗ and Tomohiro Ogawa † Institute for Advanced Studies, Technische Universität München, Lichtenbergstraße 2a, 85748 Garching, Germany Zentrum Mathematik, M5, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany Mathematical Institute, Budapest University of Technology and Economics, Egry József u 1., Budapest, 1111 Hungary. Graduate School of Information...

متن کامل

Universal channel coding for general output alphabet

We propose a universal channel coding when each output distribution forms an exponential family even in a continuous output system. We propose two types of universal codes; One has the exponentially decreasing error with explicit a lower bound for the error exponent. The other attains the ǫ-capacity up to the second order. Our encoder is the same as the previous paper [CMP 289, 1087]. For our d...

متن کامل

Asymptotic redundancies for universal quantum coding

Abstract. Clarke and Barron have recently shown that the Jeffreys’ invariant prior of Bayesian theory yields the common asymptotic (minimax and maximin) redundancy of universal data compression in a parametric setting. We seek a possible analogue of this result for the two-level quantum systems. We restrict our considerations to prior probability distributions belonging to a certain one-paramet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2009

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-009-0825-1