Universal cubic eigenvalue repulsion for random normal matrices
نویسندگان
چکیده
منابع مشابه
Large Random Matrices: Eigenvalue Distribution
A recursive method is derived to calculate all eigenvalue correlation functions of a random hermitian matrix in the large size limit, and after smoothing of the short scale oscillations. The property that the two-point function is universal, is recovered and the three and four-point functions are given explicitly. One observes that higher order correlation functions are linear combinations of u...
متن کاملWegner estimate and level repulsion for Wigner random matrices
We consider N × N Hermitian random matrices with independent identically distributed entries (Wigner matrices). The matrices are normalized so that the average spacing between consecutive eigenvalues is of order 1/N . Under suitable assumptions on the distribution of the single matrix element, we first prove that, away from the spectral edges, the empirical density of eigenvalues concentrates a...
متن کاملSparse random matrices: the eigenvalue spectrum revisited
We revisit the derivation of the density of states of sparse random matrices. We derive a recursion relation that allows one to compute the spectrum of the matrix of incidence for finite trees that determines completely the low concentration limit. Using the iterative scheme introduced by Biroli and Monasson [J. Phys. A 32, L255 (1999)] we find an approximate expression for the density of state...
متن کاملOn cubic Hodge integrals and random matrices
A conjectural relationship between the GUE partition function with even couplings and certain special cubic Hodge integrals over the moduli spaces of stable algebraic curves is under consideration.
متن کاملEigenvalue spectra of asymmetric random matrices for multicomponent neural networks.
This paper focuses on large neural networks whose synaptic connectivity matrices are randomly chosen from certain random matrix ensembles. The dynamics of these networks can be characterized by the eigenvalue spectra of their connectivity matrices. In reality, neurons in a network do not necessarily behave in a similar way, but may belong to several different categories. The first study of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 1997
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.55.205