Unsupervised Clustering Under Temporal Feature Volatility in Network Stack Fingerprinting
نویسندگان
چکیده
منابع مشابه
Unsupervised Feature-Rich Clustering
Unsupervised clustering of documents is challenging because documents can conceivably be divided across multiple dimensions. Motivated by prior work incorporating expressive features into unsupervised generative models, this paper presents an unsupervised model for categorizing textual data which is capable of utilizing arbitrary features over a large context. Utilizing locally normalized log-l...
متن کاملUnsupervised Feature Learning from Temporal Data
Current state-of-the art object detection and recognition algorithms mainly use supervised training, and most benchmark datasets contain only static images. In this work we study feature learning in the context of temporally coherent video data. We focus on training convolutional features on unlabeled video data, using only the assumption that adjacent video frames contain semantically similar ...
متن کاملTemporal Subspace Clustering for Unsupervised Action Segmentation
Action segmentation (segmenting a continuous sequence of motion data into a set of actions) has a wide range of applications and plays a role in many problems in computer vision. We look at subspace clustering as an unsupervised approach for this task. Classical subspace clustering methods uncover relationships within the data by learning codes for the samples (i.e. frames), but in this process...
متن کاملFeatures in Concert: Discriminative Feature Selection meets Unsupervised Clustering
Feature selection is an essential problem in computer vision, important for category learning and recognition. Along with the rapid development of a wide variety of visual features and classifiers, there is a growing need for efficient feature selection and combination methods, to construct powerful classifiers for more complex and higherlevel recognition tasks. We propose an algorithm that eff...
متن کاملFeature Extraction Using an Unsupervised Neural Network
A novel unsupervised neural network for dimensionality reduction that seeks directions emphasizing multimodality is presented, and its connection to exploratory projection pursuit methods is discussed. This leads to a new statistical insight into the synaptic modification equations governing learning in Bienenstock, Cooper, and Munro (BCM) neurons (1982). The importance of a dimensionality redu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM SIGMETRICS Performance Evaluation Review
سال: 2016
ISSN: 0163-5999
DOI: 10.1145/2964791.2901449