Unsupervised Domain Adaptation With Dense-Based Compaction for Hyperspectral Imagery

نویسندگان

چکیده

Enormously hard work of label obtaining leads to the lack enough annotated samples in hyperspectral imagery (HSI). The mentioned reality inferred unsupervised classification performance barely satisfactorily. Unsupervised domain adaptation is exploited for knowledge delivery from a labeled source boost on an unlabeled target domain. In this paper, we propose architecture with dense-based compaction (UDAD) HSI (HSIC). processes spectral-spatial feature compaction, adaptation, and classifier training are incorporated integrated framework complete cross-scene classification. core proposed utilize adversarial learning reduce discrepancy. To end, trained would accomplish well HSIC. Besides, extract discriminative domains, network applied semi-symmetric mapping. Our experiments illustrate that UDAD model yields more effective than other state-of-the-art HSIC methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ICA Mixture Model based Unsupervised Classification of Hyperspectral Imagery

Conventional remote sensing classification techniques that model the data in each class with a multivariate Gaussian distribution are inefficient, as this assumption is generally not valid in practice. We present a novel, Independent Component Analysis (ICA) based approach for unsupervised classification of hyperspectral imagery. ICA, employed for a mixture model, estimates the data density in ...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Boosting for Unsupervised Domain Adaptation

To cope with machine learning problems where the learner receives data from different source and target distributions, a new learning framework named domain adaptation (DA) has emerged, opening the door for designing theoretically well-founded algorithms. In this paper, we present SLDAB, a self-labeling DA algorithm, which takes its origin from both the theory of boosting and the theory of DA. ...

متن کامل

Unsupervised Domain Adaptation based on Text Relatedness

In this paper an unsupervised approach to domain adaptation is presented, which exploits external knowledge sources in order to port a classification model into a new thematic domain. Our approach extracts a new feature set from documents of the target domain, and tries to align the new features to the original ones, by exploiting text relatedness from external knowledge sources, such as WordNe...

متن کامل

A Review of Unsupervised Spectral Target Analysis for Hyperspectral Imagery

1Remote Sensing Signal and Image Processing Laboratory, Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore, MD 21250, USA 2Department of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan 3Department of Electrical and Computer Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

سال: 2021

ISSN: ['2151-1535', '1939-1404']

DOI: https://doi.org/10.1109/jstars.2021.3128932