Update on Myosin Motors: Molecular Mechanisms and Physiological Functions
نویسندگان
چکیده
منابع مشابه
Myosin-I molecular motors at a glance.
Myosin-I molecular motors are proposed to play various cellular roles related to membrane dynamics and trafficking. In this Cell Science at a Glance article and the accompanying poster, we review and illustrate the proposed cellular functions of metazoan myosin-I molecular motors by examining the structural, biochemical, mechanical and cell biological evidence for their proposed molecular roles...
متن کاملEngineering controllable bidirectional molecular motors based on myosin
Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly...
متن کاملMammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions.
The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN b...
متن کاملControllable molecular motors engineered from myosin and RNA.
Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems 1 or in living cells 2 . Previously, synthetic nucleic acid motors 3-5 and modified natural protein motors 6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function....
متن کاملKinesin and myosin: molecular motors with similar engines.
Structure determination of the catalytic domains of two members of the kinesin superfamily reveals that this class of molecular motor exhibits the same architecture as myosin and suggests that these microtubule- and actin-based motors arose from a common ancestor.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Plant Physiology
سال: 2017
ISSN: 0032-0889,1532-2548
DOI: 10.1104/pp.17.01429