Updating Categorical Soil Maps Using Limited Survey Data by Bayesian Markov Chain Cosimulation
نویسندگان
چکیده
منابع مشابه
Updating Categorical Soil Maps Using Limited Survey Data by Bayesian Markov Chain Cosimulation
Updating categorical soil maps is necessary for providing current, higher-quality soil data to agricultural and environmental management but may not require a costly thorough field survey because latest legacy maps may only need limited corrections. This study suggests a Markov chain random field (MCRF) sequential cosimulation (Co-MCSS) method for updating categorical soil maps using limited su...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولA Bayesian Approach to Longitudinal Categorical Data in a Continuous Time Markov Chain Model
Continuous time Markov chain (CTMC) models are frequently used in medical research for studies of disease progression, but they are rarely applied to thranstheretical modes (TTM). Existing literatures focus on models with restrictions of one-step transitions or with small number of states. TTM, however, often have four or more states and all one-step transitions are conceptually allowed. Though...
متن کاملBayesian Markov Chain Random Field Cosimulation for Improving Land Cover Classification Accuracy
This study introduces a Bayesian Markov chain random field (MCRF) cosimulation approach for improving land-use/land-cover (LULC) classification accuracy through integrating expert-interpreted data and pre-classified image data. The expert-interpreted data are used as conditioning sample data in cosimulation, and may be interpreted from various sources. The pre-classification can be performed us...
متن کاملBayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation
In a full Bayesian probabilistic framework for ‘‘robust’’ system identification, structural response predictions and performance reliability are updated using structural test data D by considering the predictions of a whole set of possible structural models that are weighted by their updated probability. This involves integrating h(u)p(uuD) over the whole parameter space, where u is a parameter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2013
ISSN: 1537-744X
DOI: 10.1155/2013/587284