Upper bounds for ƒ-domination number of graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Upper Bounds for Signed Star Domination Number of Graphs

Let G be a graph with the vertex set V (G) and edge set E(G). A function f : E(G) → {−1,+1} is said to be a signed star dominating function ofG if ∑ e∈EG(v) f(e) ≥ 1, for every v ∈ V (G), where EG(v) = {uv ∈ E(G) |u ∈ V (G)}. The minimum of the values of ∑ e∈E(G) f(e), taken over all signed star dominating functions f on G is called the signed star domination number of G and is denoted by γss(G...

متن کامل

Upper bounds on the paired-domination number

A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and the subgraph induced by S contains a perfect matching. The minimum cardinality of a paired-dominating set of G is the paireddomination number of G, denoted by γpr (G). In this work, we present several upper bounds on the paired-domination number in terms of the maximum degre...

متن کامل

Upper Bounds on the Total Domination Number

A total dominating set of a graph G with no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set in G. In this paper, we present several upper bounds on the total domination number in terms of the minimum degree, diameter, girth and order.

متن کامل

Upper bounds for the domination numbers of toroidal queens graphs

We determine upper bounds for γ(Qn) and i(Qn), the domination and independent domination numbers, respectively, of the graph Qn obtained from the moves of queens on the n× n chessboard drawn on the torus.

متن کامل

Some lower bounds for the $L$-intersection number of graphs

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1998

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(97)00204-5