Upper bounds for Euclidean minima of algebraic number fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euclidean minima of totally real number fields: Algorithmic determination

This article deals with the determination of the Euclidean minimum M(K) of a totally real number field K of degree n ≥ 2, using techniques from the geometry of numbers. Our improvements of existing algorithms allow us to compute Euclidean minima for fields of degree 2 to 8 and small discriminants, most of which were previously unknown. Tables are given at the end of this paper.

متن کامل

Computation of the Euclidean minimum of algebraic number fields

We present an algorithm to compute the Euclidean minimum of an algebraic number field, which is a generalization of the algorithm restricted to the totally real case described by Cerri ([7]). With a practical implementation, we obtain unknown values of the Euclidean minima of algebraic number fields of degree up to 8 in any signature, especially for cyclotomic fields, and many new examples of n...

متن کامل

Geometric Methods for Improving the Upper Bounds on the Number of Rational Points on Algebraic Curves over Finite Fields

Currently, the best upper bounds on the number of rational points on an absolutely irreducible, smooth, projective algebraic curve of genus g defined over a finite field Fq come either from Serre’s refinement of the Weil bound if the genus is small compared to q, or from Oesterlé’s optimization of the explicit formulae method if the genus is large. This paper presents three methods for improvin...

متن کامل

Upper Bounds for the Number of Number Fields with Alternating Galois Group

We study the number N(n,An, X) of number fields of degree n whose Galois closure has Galois group An and whose discriminant is bounded by X. By a conjecture of Malle, we expect that N(n,An, X) ∼ Cn ·X 1 2 ·(logX)bn for constants bn and Cn. For 6 ≤ n ≤ 84393, the best known upper bound is N(n,An, X) � X n+2 4 ; this bound follows from Schmidt’s Theorem, which implies there are � X n+2 4 number f...

متن کامل

Algebraic number fields

By an algebraic number field we mean a subfield of the algebraic numbers, or an isomorphic copy of such a field. Here we consider questions related to the complexity of determining isomorphism between algebraic number fields. We characterize the algebraic number fields with computable copies. For computable algebraic number fields, we give the complexity of the index sets. We show that the isom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2006

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2006.03.002