Urban traffic flow prediction: a dynamic temporal graph network considering missing values

نویسندگان

چکیده

AbstractAbstractAccurate traffic flow prediction on the urban road network is an indispensable function of Intelligent Transportation Systems (ITS), which great significance for planning. However, current methods still face many challenges, such as missing values and dynamic spatial relationships in flow. In this study, a temporal graph neural considering (D-TGNM) proposed prediction. First, inspired by Bidirectional Encoder Representations from Transformers (BERT), we extend classic BERT model, called Traffic BERT, to learn associations structure. Second, propose (TGNM) mine patterns data scenarios Finally, D-TGNM model can be obtained integrating learned into TGNM model. To train design novel loss function, considers problem flow, optimize The was validated actual dataset collected Wuhan, China. Experimental results showed that achieved good under four (15% random missing, 15% block 30% missing), outperformed ten existing state-of-the-art baselines.Keywords: missingtraffic predictiongraph networksdynamic graphTraffic AcknowledgmentsThe numerical calculations paper have been done supercomputing system Supercomputing Center Wuhan University.Disclosure statementNo potential conflict interest reported author(s).Data codes availability statementThe support findings study are available ‘figshare.com’ with identifier https://doi.org/https://doi.org/10.6084/m9.figshare.19642575.Additional informationFundingThis project supported National Key R&D Program China (International Scientific & Technological Cooperation Program) [grant 2019YFE0106500], Natural Science Foundation 41871308].Notes contributorsPeixiao WangPeixiao Wang PhD candidate State Laboratory Information Engineering Surveying, Mapping Remote Sensing (LIESMARS), University. He received M.S. degree Academy Digital China, Fuzhou University 2020. His research focus spatiotemporal mining, prediction, social computing, public health.Yan ZhangYan Zhang Sensing, also joint at School Design Environment, Singapore. collaborative sensing geographic knowledge services.Tao HuTao Hu Assistant Professor Department Geography Oklahoma (OSU). Before joining OSU, he worked postdoc fellow Geographic Analysis Harvard Kent interests include geospatial big analysis (i.e., media), health geography, human mobility, crime geography.Tong ZhangTong M.Eng. cartography information (GIS) University, 2003, Ph.D. geography San Diego Diego, CA, USA, California Santa Barbara, 2007. topics computing machine learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Flow Prediction Using Mi Algorithm and Considering Noisy and Data Loss Conditions: an Application to Minnesota Traffic Flow Prediction

Traffic flow forecasting is useful for controlling traffic flow, traffic lights, and travel times. This study uses a multilayer perceptron neural network and the mutual information (MI) technique to forecast traffic flow and compares the prediction results with conventional traffic flow forecasting methods. The MI method is used to calculate the interdependency of historical traffic data and fu...

متن کامل

A network traffic flow model for motorway and urban highways

The research reported in this paper develops a network level traffic flow model (NTFM) which is applicable for both motorway and urban roads. It forecasts the traffic flow rates, queue propagation at the junctions and travel delays through the network. NTFM uses sub-models associated with all road and junction types which comprise the highway. The flow at any one part of the network is obviousl...

متن کامل

Traffic Flow Forecasting Using a Spatio-temporal Bayesian Network Predictor

A novel predictor for traffic flow forecasting, namely spatiotemporal Bayesian network predictor, is proposed. Unlike existing methods, our approach incorporates all the spatial and temporal information available in a transportation network to carry our traffic flow forecasting of the current site. The Pearson correlation coefficient is adopted to rank the input variables (traffic flows) for pr...

متن کامل

DeepTrend: A Deep Hierarchical Neural Network for Traffic Flow Prediction

In this paper, we consider the temporal pattern in traffic flow time series, and implement a deep learning model for traffic flow prediction. Detrending based methods decompose original flow series into trend and residual series, in which trend describes the fixed temporal pattern in traffic flow and residual series is used for prediction. Inspired by the detrending method, we propose DeepTrend...

متن کامل

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Geographical Information Science

سال: 2022

ISSN: ['1365-8824', '1365-8816']

DOI: https://doi.org/10.1080/13658816.2022.2146120