Using the XCS Classifier System for Multi-objective Reinforcement Learning Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using the XCS Classifier System for Multi-objective Reinforcement Learning Problems

We investigate the performance of a learning classifier system in some simple multi-objective, multi-step maze problems, using both random and biased action-selection policies for exploration. Results show that the choice of action-selection policy can significantly affect the performance of the system in such environments. Further, this effect is directly related to population size, and we rel...

متن کامل

Evaluation of the Learning Classifier System XCS

In this paper, we evaluate the feasibility of using the learning classifier XCS to control a System-on-Chip. Increasing number of transistors and process variation make it difficult for a chip designer to foresee all possible run-time conditions. Postponing some decisions from design time to run time alleviates the designer’s life and allows shorter time-to-market. In this paper, we evaluate if...

متن کامل

Multi-Objective Reinforcement Learning

In multi-objective reinforcement learning (MORL) the agent is provided with multiple feedback signals when performing an action. These signals can be independent, complementary or conflicting. Hence, MORL is the process of learning policies that optimize multiple criteria simultaneously. In this abstract, we briefly describe our extensions to single-objective multi-armed bandits and reinforceme...

متن کامل

Multi-Objective Service Composition Using Reinforcement Learning

Web services have the potential to offer the enterprises with the ability to compose internal and external business services in order to accomplish complex processes. Service composition then becomes an increasingly challenging issue when complex and critical applications are built upon services with different QoS criteria. However, most of the existing QoS-aware compositions are simply based o...

متن کامل

Why Multi-objective Reinforcement Learning?

We argue that multi-objective methods are underrepresented in RL research, and present three scenarios to justify the need for explicitly multi-objective approaches. Key to these scenarios is that although the utility the user derives from a policy — which is what we ultimately aim to optimize — is scalar, it is sometimes impossible, undesirable or infeasible to formulate the problem as single-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Artificial Life

سال: 2007

ISSN: 1064-5462,1530-9185

DOI: 10.1162/artl.2007.13.1.69