Value function uncertainty as a cognitive map for reinforcement learning

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Managing Uncertainty within Value Function Approximation in Reinforcement Learning

The dilemma between exploration and exploitation is an important topic in reinforcement learning (RL). Most successful approaches in addressing this problem tend to use some uncertainty information about values estimated during learning. On another hand, scalability is known as being a lack of RL algorithms and value function approximation has become a major topic of research. Both problems ari...

متن کامل

Value-Aware Loss Function for Model Learning in Reinforcement Learning

We consider the problem of estimating the transition probability kernel to be used by a model-based reinforcement learning (RL) algorithm. We argue that estimating a generative model that minimizes a probabilistic loss, such as the log-loss, might be an overkill because such a probabilistic loss does not take into account the underlying structure of the decision problem and the RL algorithm tha...

متن کامل

Convergent Reinforcement Learning with Value Function Interpolation

We consider the convergence of a class of reinforcement learning algorithms combined with value function interpolation methods using the methods developed in (Littman & Szepesvári, 1996). As a special case of the obtained general results, for the first time, we prove the (almost sure) convergence of Qlearning when combined with value function interpolation in uncountable spaces.

متن کامل

Value-function reinforcement learning in Markov games

Markov games are a model of multiagent environments that are convenient for studying multiagent reinforcement learning. This paper describes a set of reinforcement-learning algorithms based on estimating value functions and presents convergence theorems for these algorithms. The main contribution of this paper is that it presents the convergence theorems in a way that makes it easy to reason ab...

متن کامل

Online Determination of Value-Function Structure and Action-value Estimates for Reinforcement Learning in a Cognitive Architecture

We describe how an agent can dynamically and incrementally determine the structure of a value function from background knowledge as a side effect of problem solving. The agent determines the value function as it performs the task, using background knowledge in novel situations to compute an expected value for decision making. That expected value becomes the initial estimate of the value functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Systems Neuroscience

سال: 2009

ISSN: 1662-5137

DOI: 10.3389/conf.neuro.06.2009.03.105