Vanishing viscosity limit of Navier-Stokes Equations in Gevrey class

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanishing Viscosity Limit of the Navier-Stokes Equations to the Euler Equations for Compressible Fluid Flow

We establish the vanishing viscosity limit of the Navier-Stokes equations to the isentropic Euler equations for one-dimensional compressible fluid flow. For the NavierStokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup-norm of solutions with respect to the physical viscosity coefficient may not be directly co...

متن کامل

Uniform Regularity and Vanishing Viscosity Limit for the Free Surface Navier-stokes Equations

We study the inviscid limit of the free boundary Navier-Stokes equations. We prove the existence of solutions on a uniform time interval by using a suitable functional framework based on Sobolev conormal spaces. This allows us to use a strong compactness argument to justify the inviscid limit. Our approach does not rely on the justification of asymptotic expansions. In particular, we get a new ...

متن کامل

The Unstable Spectrum of the Navier-stokes Operator in the Limit of Vanishing Viscosity

A general class of linear advective PDEs, whose leading order term is of viscous dissipative type, is considered. It is proved that beyond the limit of the essential spectrum of the underlying inviscid operator, the eigenvalues of the viscous operator, in the limit of vanishing viscosity, converge precisely to those of the inviscid operator. The general class of PDEs includes the equations of i...

متن کامل

Gevrey Regularity for Navier–stokes Equations under Lions Boundary Conditions

The Navier–Stokes system is considered in a compact Riemannian manifold. Gevrey class regularity is proven under Lions boundary conditions in the cases of the 2D Rectangle, Cylinder, and Hemisphere. The cases of the 2D Sphere and 2D and 3D Torus are also revisited. MSC2010: 35Q30, 76D03

متن کامل

Vanishing Viscosity Limit to Rarefaction Waves for the Navier-Stokes Equations of One-Dimensional Compressible Heat-Conducting Fluids

We prove the solution of the Navier-Stokes equations for one-dimensional compressible heat-conducting fluids with centered rarefaction data of small strength exists globally in time, and moreover, as the viscosity and heat-conductivity coefficients tend to zero, the global solution converges to the centered rarefaction wave solution of the corresponding Euler equations uniformly away from the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in the Applied Sciences

سال: 2017

ISSN: 0170-4214

DOI: 10.1002/mma.4378