$\varepsilon $-weakly precompact sets in Banach spaces

نویسندگان

چکیده

A bounded subset $M$ of a Banach space $X$ is said to be $\varepsilon $-weakly precompact, for given \geq 0$, if every sequence $(x_n)_{n\in \mathbb N}$ in $M$ admits subsequence $(x_{n_k})_{k\in such that $$ \limsup

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly Compact Approximation in Banach Spaces

The Banach space E has the weakly compact approximation property (W.A.P. for short) if there is a constant C < ∞ so that for any weakly compact set D ⊂ E and ε > 0 there is a weakly compact operator V : E → E satisfying supx∈D ‖x − V x‖ < ε and ‖V ‖ ≤ C. We give several examples of Banach spaces both with and without this approximation property. Our main results demonstrate that the James-type ...

متن کامل

Some results on functionally convex sets in real Banach spaces

‎We use of two notions functionally convex (briefly‎, ‎F--convex) and functionally closed (briefly‎, ‎F--closed) in functional analysis and obtain more results‎. ‎We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$‎, ‎then $bigcup_{alphain I}A_{alpha}$ is F--convex‎. ‎Moreover‎, ‎we introduce new definition o...

متن کامل

Precompact Apartness Spaces

We present a notion of precompactness, and study some of its properties, in the context of apartness spaces whose apartness structure is not necessarily induced by any uniform one. The presentation lies entirely with a Bishop-style constructive framework, and is a contribution to the ongoing development of the constructive theories of apartness and uniformity.

متن کامل

On Weakly Compact Subsets of Banach Spaces

Introduction. The two sections of this note are independent, but they are related by the fact that both use the results of [5 ] to obtain information on the properties of weakly compact sets in Banach spaces. In the first section we prove some results on a class of compact sets which is believed to include all weakly compact subsets of Banach spaces. We are interested in the properties of the n...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2022

ISSN: ['0039-3223', '1730-6337']

DOI: https://doi.org/10.4064/sm210202-16-9