Variable preconditioning for strongly nonlinear elliptic problems
نویسندگان
چکیده
منابع مشابه
Operator preconditioning with efficient applications for nonlinear elliptic problems
Nonlinear elliptic partial differential equations form a class of equations that is widespread in modelling various nonlinear phenomena in science, hence their numerical solution has continuously been a subject of extensive research. Such problems also arise from timedependent nonlinear PDE problems, either on the time levels after the time discretization or as describing steady-states of the p...
متن کاملMultiple Solutions for Nonlinear Discontinuous Strongly Resonant Elliptic Problems
We consider quasilinear strongly resonant problems with discontinuous right-hand side. To develop an existence theory we pass to a multivalued problem by, roughly speaking, filling in the gaps at the discontinuity points. We prove the existence of at least three nontrivial solutions. Our approach uses the nonsmooth critical point theory for locally Lipschitz functionals due to Chang (1981) and ...
متن کاملMultiple Solutions for Strongly Resonant Nonlinear Elliptic Problems with Discontinuities
We examine a nonlinear strongly resonant elliptic problem driven by the p-Laplacian and with a discontinuous nonlinearity. We assume that the discontinuity points are countable and at them the nonlinearity has an upward jump discontinuity. We show that the problem has at least two nontrivial solutions without using a multivalued interpretation of the problem as it is often the case in the liter...
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملA Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems
Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2019
ISSN: 0377-0427
DOI: 10.1016/j.cam.2018.10.004