Variable selection in generalized functional linear models
نویسندگان
چکیده
منابع مشابه
Variable Selection in Generalized Functional Linear Models.
Modern research data, where a large number of functional predictors is collected on few subjects are becoming increasingly common. In this paper we propose a variable selection technique, when the predictors are functional and the response is scalar. Our approach is based on adopting a generalized functional linear model framework and using a penalized likelihood method that simultaneously cont...
متن کاملRobust Variable Selection in Functional Linear Models
We consider the problem of selecting functional variables using the L1 regularization in a functional linear regression model with a scalar response and functional predictors in the presence of outliers. Since the LASSO is a special case of the penalized least squares regression with L1-penalty function it suffers from the heavy-tailed errors and/or outliers in data. Recently, the LAD regressio...
متن کاملBayesian projection approaches to variable selection in generalized linear models
A Bayesian approach to variable selection which is based on the expected Kullback–Leibler divergence between the full model and its projection onto a submodel has recently been suggested in the literature. For generalized linear models an extension of this idea is proposed by considering projections onto subspaces defined via some form of L1 constraint on the parameter in the full model. This l...
متن کاملAdaptive Bayesian Criteria in Variable Selection for Generalized Linear Models
For the problem of variable selection in generalized linear models, we develop various adaptive Bayesian criteria. Using a hierarchical mixture setup for model uncertainty, combined with an integrated Laplace approximation, we derive Empirical Bayes and Fully Bayes criteria that can be computed easily and quickly. The performance of these criteria is assessed via simulation and compared to othe...
متن کاملVariable selection for marginal longitudinal generalized linear models.
Variable selection is an essential part of any statistical analysis and yet has been somewhat neglected in the context of longitudinal data analysis. In this article, we propose a generalized version of Mallows's C(p) (GC(p)) suitable for use with both parametric and nonparametric models. GC(p) provides an estimate of a measure of model's adequacy for prediction. We examine its performance with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stat
سال: 2013
ISSN: 2049-1573
DOI: 10.1002/sta4.20