Variation of the Canonical Height On Elliptic-Surfaces II:
نویسندگان
چکیده
منابع مشابه
The Canonical Height on K 3 Surfaces
Let S be a surface in P2 × P2 given by the intersection of a (1,1)form and a (2,2)-form. Then S is a K3 surface with two noncommuting involutions σx and σy . In 1991 the second author constructed two height functions ĥ+ and ĥ− which behave canonically with respect to σx and σy , and in 1993 together with the first author showed in general how to decompose such canonical heights into a sum of lo...
متن کاملComputing the canonical height on K3 surfaces
Let S be a surface in P2 × P2 given by the intersection of a (1,1)form and a (2,2)-form. Then S is a K3 surface with two noncommuting involutions σx and σy . In 1991 the second author constructed two height functions ĥ+ and ĥ− which behave canonically with respect to σx and σy , and in 1993 together with the first author showed in general how to decompose such canonical heights into a sum of lo...
متن کاملPoints of low height on elliptic curves and surfaces I: Elliptic surfaces over P1 with small d
For each of n = 1, 2, 3 we find the minimal height ĥ(P ) of a nontorsion point P of an elliptic curve E over C(T ) of discriminant degree d = 12n (equivalently, of arithmetic genus n), and exhibit all (E, P ) attaining this minimum. The minimal ĥ(P ) was known to equal 1/30 for n = 1 (Oguiso-Shioda) and 11/420 for n = 2 (Nishiyama), but the formulas for the general (E,P ) were not known, nor wa...
متن کاملThe Canonical Height of an Algebraic Point on an Elliptic Curve
We use elliptic divisibility sequences to describe a method for estimating the global canonical height of an algebraic point on an elliptic curve. This method requires almost no knowledge of the number field or the curve, is simple to implement, and requires no factorization. The method is ideally suited to searching for algebraic points with small height, in connection with the elliptic Lehmer...
متن کاملA Dynamical Interpretation of the Global Canonical Height on an Elliptic Curve
There is a well–understood connection between polynomials and certain simple algebraic dynamical systems. In this connection, the Mahler measure corresponds to the topological entropy, Kronecker’s Theorem relates ergodicity to positivity of entropy, approximants to the Mahler measure are related to growth rates of periodic points, and Lehmer’s problem is related to the existence of algebraic mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1994
ISSN: 0022-314X
DOI: 10.1006/jnth.1994.1069