Variational approach to unsupervised learning
نویسندگان
چکیده
منابع مشابه
Meta-Unsupervised-Learning: A supervised approach to unsupervised learning
We introduce a new paradigm to investigate unsupervised learning, reducing unsupervised learning to supervised learning. Specifically, we mitigate the subjectivity in unsupervised decision-making by leveraging knowledge acquired from prior, possibly heterogeneous, supervised learning tasks. We demonstrate the versatility of our framework via comprehensive expositions and detailed experiments on...
متن کاملUnsupervised Variational Bayesian Learning of Nonlinear Models
In this paper we present a framework for using multi-layer perceptron (MLP) networks in nonlinear generative models trained by variational Bayesian learning. The nonlinearity is handled by linearizing it using a Gauss–Hermite quadrature at the hidden neurons. This yields an accurate approximation for cases of large posterior variance. The method can be used to derive nonlinear counterparts for ...
متن کاملVariational Deep Embedding: An Unsupervised and Generative Approach to Clustering
Clustering is among the most fundamental tasks in computer vision and machine learning. In this paper, we propose Variational Deep Embedding (VaDE), a novel unsupervised generative clustering approach within the framework of Variational Auto-Encoder (VAE). Specifically, VaDE models the data generative procedure with a Gaussian Mixture Model (GMM) and a deep neural network (DNN): 1) the GMM pick...
متن کامل"Memory foam" approach to unsupervised learning
We propose an alternative approach to construct an artificial learning system, which naturally learns in an unsupervised manner. Its mathematical prototype is a dynamical system, which automatically shapes its vector field in response to the input signal. The vector field converges to a gradient of a multi-dimensional probability density distribution of the input process, taken with negative si...
متن کاملA Variational Approach to Learning Curves
We combine the replica approach from statistical physics with a variational approach to analyze learning curves analytically. We apply the method to Gaussian process regression. As a main result we derive approximative relations between empirical error measures, the generalization error and the posterior variance.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics Communications
سال: 2019
ISSN: 2399-6528
DOI: 10.1088/2399-6528/ab3029