Variational Quantum Singular Value Decomposition

نویسندگان

چکیده

Singular value decomposition is central to many problems in engineering and scientific fields. Several quantum algorithms have been proposed determine the singular values their associated vectors of a given matrix. Although these are promising, required subroutines resources too costly on near-term devices. In this work, we propose variational algorithm for (VQSVD). By exploiting principles Ky Fan Theorem, design novel loss function such that two neural networks (or parameterized circuits) could be trained learn output corresponding values. Furthermore, conduct numerical simulations VQSVD random matrices as well its applications image compression handwritten digits. Finally, discuss our recommendation systems polar decomposition. Our work explores new avenues information processing beyond conventional protocols only works Hermitian data, reveals capability matrix

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیشنهاد روش جدیدی برای محاسبه polynomial singular value decomposition ) psvd )

در این پایان نامه به معرفی روشهای مختلف محاسبه psvd می پردازیم. بخشی از این روشها به بررسی روشهای مختلف محاسبه psvd در مقالات مطالعه شده می پردازد که می توان به محاسبهpsvd با استفاده از الگوریتمهای pqrd و pevd و sbr2 و محاسبه psvd براساس تکنیک kogbetliantz و روش پارامتریک برای محاسبه psvd اشاره نمود. بخش بعدی نیز به بررسی روشهای مستقیم پیشنهادی محاسبه psvd برای ماتریسهای 2×2و2× n و n×2 و 3× n و...

15 صفحه اول

Singular-value decomposition using quantum annealing.

In the present study, we demonstrate how to perform, using quantum annealing, the singular value decomposition and the principal component analysis. Quantum annealing gives a way to find a ground state of a system, while the singular value decomposition requires the maximum eigenstate. The key idea is to transform the sign of the final Hamiltonian, and the maximum eigenstate is obtained by quan...

متن کامل

On a Variational Formulation of the Generalized Singular Value Decomposition

A variational formulation for the generalized singular value decomposition GSVD of a pair of matrices A R n and B R n is presented In particular a duality theory analogous to that of the SVD provides new understanding of left and right generalized singular vectors It is shown that the intersection of row spaces of A and B plays a key role in the GSVD duality theory The main result that characte...

متن کامل

Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD)

The singular value decomposition (SVD) is a generalization of the eigen-decomposition which can be used to analyze rectangular matrices (the eigen-decomposition is definedonly for squaredmatrices). By analogy with the eigen-decomposition, which decomposes a matrix into two simple matrices, the main idea of the SVD is to decompose a rectangular matrix into three simple matrices: Two orthogonal m...

متن کامل

Robust Singular Value Decomposition

The singular value decomposition of a rectangular data matrix can be used to understand the structure of the data and give insight into the relationships of the row and column factors. For example, the rows linked to the rows might be experimental conditions of temperature and the experimental conditions linked to the columns might pressure. In a biological setting the rows might be linked to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quantum

سال: 2021

ISSN: ['2521-327X']

DOI: https://doi.org/10.22331/q-2021-06-29-483