Variations of Andrews-Beck type congruences
نویسندگان
چکیده
We prove three variations of recent results due to Andrews on congruences for $NT(m,k,n)$, the total number parts in partitions $n$ with rank congruent $m$ modulo $k$. also conjecture new and relations $NT(m,k,n)$ a related crank-type function.
منابع مشابه
Congruences for Andrews' spt-Function Modulo 32760 and Extension of Atkin's Hecke-Type Partition Congruences
New congruences are found for Andrews’ smallest parts partition function spt(n). The generating function for spt(n) is related to the holomorphic part α(24z) of a certain weak Maass form M(z) of weight 3 2 . We show that a normalized form of the generating function for spt(n) is an eigenform modulo 72 for the Hecke operators T (`2) for primes ` > 3, and an eigenform modulo p for p = 5, 7 or 13 ...
متن کاملCongruences for Andrews’ Spt-function
Congruences are found modulo powers of 5, 7 and 13 for Andrews’ smallest parts partition function spt(n). These congruences are reminiscent of Ramanujan’s partition congruences modulo powers of 5, 7 and 11. Recently, Ono proved explicit Ramanujan-type congruences for spt(n) modulo ` for all primes ` ≥ 5 which were conjectured earlier by the author. We extend Ono’s method to handle the powers of...
متن کاملThe Andrews–Sellers family of partition congruences
In 1994, James Sellers conjectured an infinite family of Ramanujan type congruences for 2-colored Frobenius partitions introduced by George E. Andrews. These congruences arise modulo powers of 5. In 2002 Dennis Eichhorn and Sellers were able to settle the conjecture for powers up to 4. In this article, we prove Sellers' conjecture for all powers of 5. In addition, we discuss why the Andrews-Sel...
متن کاملCongruences for the Andrews spt function.
Ramanujan-type congruences for the Andrews spt(n) partition function have been found for prime moduli 5 ≤ ℓ ≤ 37 in the work of Andrews [Andrews GE, (2008) J Reine Angew Math 624:133-142] and Garvan [Garvan F, (2010) Int J Number Theory 6:1-29]. We exhibit unexpectedly simple congruences for all ℓ≥5. Confirming a conjecture of Garvan, we show that if ℓ≥5 is prime and (-δ/ℓ) = 1, then spt[(ℓ2(ℓn...
متن کاملPartition congruences and the Andrews-Garvan-Dyson crank.
In 1944, Freeman Dyson conjectured the existence of a "crank" function for partitions that would provide a combinatorial proof of Ramanujan's congruence modulo 11. Forty years later, Andrews and Garvan successfully found such a function and proved the celebrated result that the crank simultaneously "explains" the three Ramanujan congruences modulo 5, 7, and 11. This note announces the proof of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2021
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2020.124771