Varieties of modules over the quantum plane

نویسندگان

چکیده

The quantum plane is the non-commutative polynomial algebra in variables x and y with = q . In this paper, we study module variety of n -dimensional modules over plane, provide an explicit description its irreducible components their dimensions. We also describe dimensions GIT quotient respect to conjugation action GL

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of Modules over Small Quantum Groups

We fix a base field k of characteristic not dividing l. We suppose that k contains a primitive l-th root of unity ζ , and fix it. Starting from these data, one defines certain category C. Its objects are finite dimensional X-graded k-vector spaces equipped with an action of Lusztig’s ”small” quantum group u (cf. [L2]) such that the action of its Cartan subalgebra is compatible with the X-gradin...

متن کامل

On Support Varieties for Modules over Complete Intersections

Let (A, m, k) be a complete intersection of codimension c, and k̃ the algebraic closure of k. We show that every homogeneous algebraic subset of k̃c is the cohomological support variety of an A-module, and that the projective variety of a complete indecomposable maximal Cohen-Macaulay A-module is connected.

متن کامل

Support Varieties for Modules over Stacked Monomial Algebras

Let Λ be a finite-dimensional (D, A)-stacked monomial algebra. In this paper, we give necessary and sufficient conditions for the variety of a simple Λ-module to be nontrivial. This is then used to give structural information on the algebra Λ, as it is shown that if the variety of every simple module is nontrivial, then Λ is a D-Koszul monomial algebra. We also provide examples of (D, A)-stacke...

متن کامل

On the Finsler modules over H-algebras

In this paper, applying the concept of generalized A-valued norm on a right $H^*$-module and also the notion of ϕ-homomorphism of Finsler modules over $C^*$-algebras we first improve the definition of the Finsler module over $H^*$-algebra and then define ϕ-morphism of Finsler modules over $H^*$-algebras. Finally we present some results concerning these new ones.

متن کامل

Connections on Modules over Quasi-homogeneous Plane Curves

Let k be an algebraically closed field of characteristic 0, and let A = k[x, y]/(f) be a quasi-homogeneous plane curve. We show that for any graded torsion free A-module M without free summands, there exists a natural graded integrable connection, i.e. a graded A-linear homomorphism ∇ : Derk(A) → Endk(M) that satisfy the derivation property and preserves the Lie product. In particular, a torsio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2021

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2021.03.031