Velocity Estimation Method Using the Adaptive Kalman Filter.
نویسندگان
چکیده
منابع مشابه
Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملStator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter
This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...
متن کاملMarket Risk Beta Estimation using Adaptive Kalman Filter
Market risk of an asset or portfolio is recognized through beta in Capital Asset Pricing Model (CAPM). Traditional estimation techniques emerge poor results when beta in CAPM assumed to be dynamic and follows auto regressive model. Kalman Filter (KF) can optimally estimate dynamic beta where measurement noise covariance and state noise covariance are assumed to be known in a state-space framewo...
متن کاملAerodynamic parameter estimation using adaptive unscented Kalman filter
Purpose – The purpose of this paper is to estimate aerodynamic parameters accurately from flight data in the presence of unknown noise characteristics. Design/methodology/approach – The introduced adaptive filter scheme is composed of two parallel UKFs. At every time-step, the master UKF estimates the states and parameters using the noise covariance obtained by the slave UKF, while the slave UK...
متن کاملAdaptive Unscented Kalman Filter using Maximum Likelihood Estimation
The purpose of this study is to develop an adaptive unscented Kalman filter (UKF) by tuning the measurement noise covariance. We use the maximum likelihood estimation (MLE) and the covariance matching (CM) method to estimate the noise covariance. The multi-step prediction errors generated by the UKF are used for covariance estimation by MLE and CM. Then we apply the two covariance estimation me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Visualization Society of Japan
سال: 1992
ISSN: 1884-037X,0916-4731
DOI: 10.3154/jvs.12.130