Viscosity solutions of fully nonlinear functional parabolic PDE

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscosity solutions of fully nonlinear functional parabolic PDE

Here, Q = (0,T) ×Ω, Γ = (0,T) × ∂Ω (T < +∞ or T = +∞), and Ω is a bounded open subset ofRn, Qτ̄=[−τ̄,0]×Ω, Cm=C[−τ̄,0]×···×C[−τ̄,0] denotes the corresponding continuous function space; u : Qτ̄ ∪Q→R is the unknown function, ut(τ) = (ut(τ1), . . . , ut(τm)) = (u(t+ τ1,x), . . . ,u(t + τm,x)) with −τ̄ ≤ τj ≤ 0, j = 1,2, . . . ,m, f : Q×R×Cm × R×Rn× S(n) →R is a given functional which is locally bounded,...

متن کامل

Comparison of Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Path-Dependent PDEs

We prove a comparison result for viscosity solutions of (possibly degenerate) parabolic fully nonlinear path-dependent PDEs. In contrast with the previous result in Ekren, Touzi & Zhang [10], our conditions are easier to check and allow for the degenerate case, thus including first order path-dependent PDEs. Our argument follows the regularization method as introduced by Jensen, Lions & Sougani...

متن کامل

Uniqueness of Viscosity Solutions of a Geometric Fully Nonlinear Parabolic Equation

We observe that the comparison result of Barles-Biton-Ley for viscosity solutions of a class of nonlinear parabolic equations can be applied to a geometric fully nonlinear parabolic equation which arises from the graphic solutions for the Lagrangian mean curvature flow.

متن کامل

Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent Pdes: Part I by Ibrahim Ekren,

The main objective of this paper and the accompanying one [Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II (2012) Preprint] is to provide a notion of viscosity solutions for fully nonlinear parabolic path-dependent PDEs. Our definition extends our previous work [Ann. Probab. (2014) 42 204–236], focused on the semilinear case, and is crucially based on the nonlinear...

متن کامل

Continuous Dependence Estimates for Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Equations

Using the maximum principle for semicontinuous functions (Differential Integral Equations 3 (1990), 1001–1014; Bull. Amer. Math. Soc. (N.S) 27 (1992), 1–67), we establish a general ‘‘continuous dependence on the nonlinearities’’ estimate for viscosity solutions of fully nonlinear degenerate parabolic equations with timeand space-dependent nonlinearities. Our result generalizes a result by Souga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2005

ISSN: 0161-1712,1687-0425

DOI: 10.1155/ijmms.2005.3539