Viscous approach for Linear Hyperbolic Systems with Discontinuous Coefficients
نویسندگان
چکیده
منابع مشابه
Viscous approach for Linear Hyperbolic Systems with Discontinuous Coefficients
— We introduce small viscosity solutions of hyperbolic systems with discontinuous coefficients accross the fixed noncharacteristic hypersurface {xd = 0}. Under a geometric stability assumption, our first result is obtained, in the multi-D framework, for piecewise smooth coefficients. For our second result, the considered operator is ∂t+a(x)∂x, with sign(xa(x)) > 0 (expansive case not included i...
متن کاملHyperbolic equations and systems with discontinuous coefficients or source terms
This paper is devoted to the study of some nonlinear hyperbolic equations or systems with discontinuous coefficients or with source terms. The common feature of the considered problems is the fact that the jacobian matrix of an associated autonomous system is not diagonalizable in R for many values of the unknown (leading to linear ill posed problems). However, the nonlinear problems appear to ...
متن کاملA maximum principle for linear elliptic systems with discontinuous coefficients
We prove a maximum principle for linear second order elliptic systems in divergence form with discontinuous coefficients under a suitable condition on the dispersion of the eigenvalues of the coefficients matrix.
متن کاملSuperconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients
In this paper, we study the superconvergence behavior of discontinuous Galerkin methods using upwind numerical fluxes for one-dimensional linear hyperbolic equations with degenerate variable coefficients. The study establishes superconvergence results for the flux function approximation as well as for the DG solution itself. To be more precise, we first prove that the DG flux function is superc...
متن کاملDiscontinuous Hamiltonian Finite Element Method for Linear Hyperbolic Systems
We develop a Hamiltonian discontinuous finite element discretization of a generalized Hamiltonian system for linear hyperbolic systems, which include the rotating shallow water equations, the acoustic and Maxwell equations. These equations have a Hamiltonian structure with a bilinear Poisson bracket, and as a consequence the phase-space structure, “mass” and energy are preserved. We discretize ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de la faculté des sciences de Toulouse Mathématiques
سال: 2009
ISSN: 0240-2963
DOI: 10.5802/afst.1209