Visibility in crowds of translates of a centrally symmetric convex body

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pairs of Convex Bodies with Centrally Symmetric Intersections of Translates

For a pair of convex bodies K and K ′ in Ed , the d-dimensional intersections K ∩ (x + K ′), x ∈ Ed , are centrally symmetric if and only if K and K ′ are represented as direct sums K = R ⊕ P and K ′ = R′ ⊕ P ′ such that: (i) R is a compact convex set of some dimension m, 0 ≤ m ≤ d, and R′ = z − R for a suitable vector z ∈ Ed , (ii) P and P ′ are isothetic parallelotopes, both of dimension d − m.

متن کامل

On the shadow boundary of a centrally symmetric convex body

If K is a 0-symmetric, bounded, convex body in the Euclidean n-space R (with a fixed origin O) then it defines a norm whose unit ball is K itself (see [12]). Such a space is called Minkowski normed space. The main results in this topic collected in the survey [16] and [17]. In fact, the norm is a continuous function which is considered (in the geometric terminology as in [12]) as a gauge functi...

متن کامل

On the visibility graph of convex translates

We show that the visibility graph of a set of non-intersecting translates of the same compact convex object in R always contains a Hamiltonian path. Furthermore, we show that every other edge in the Hamiltonian path can be used to obtain a perfect matching that is realized by a set of non-intersecting lines of sight. ? 2001 Elsevier Science B.V. All rights reserved.

متن کامل

A‰ne-regular hexagons of extreme areas inscribed in a centrally symmetric convex body

Let M be a planar centrally symmetric convex body. If H is an a‰ne regular hexagon of the smallest (the largest) possible area inscribed in M, then M contains (respectively, the interior of M does not contain) an additional pair of symmetric vertices of the a‰neregular 12-gon TH whose every second vertex is a vertex of H. Moreover, we can inscribe in M an octagon whose three pairs of opposite v...

متن کامل

Banach-Mazur Distance of Central Sections of a Centrally Symmetric Convex Body

We prove that the Banach-Mazur distance between arbitrary two central sections of co-dimension c of any centrally symmetric convex body in E is at most (2c+ 1). MSC 2000: 52A21, 46B20

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2010

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2009.10.008