Visual motion aftereffects: Differential adaptation and test stimulation
نویسندگان
چکیده
منابع مشابه
Visual motion aftereffects: Differential adaptation and test stimulation
The local motion adaptation at the basis of the motion aftereffect (MAE) can be expressed in a variety of ways, depending upon the structure of the test display [Wade et al. (1996). Vision Research, 36, 2167-2175]. Three experiments are reported, which examined the characteristics of the test display and of the local adaptation process. In Experiment 1, MAEs were recorded in the central of thre...
متن کاملVisual Motion Aftereffects: Critical Adaptation and Test Conditions
The visual motion aftereffect (MAE) typically occurs when stationary contours are presented to a retinal region that has previously been exposed to motion. It can also be generated following observation of a stationary grating when two gratings (above and below it) move laterally: the surrounding gratings induce motion in the opposite direction in the central one. Following adaptation, the cent...
متن کاملTranscranial alternating current stimulation attenuates visual motion adaptation.
Transcranial alternating current stimulation (tACS) is used in clinical applications and basic neuroscience research. Although its behavioral effects are evident from prior reports, current understanding of the mechanisms that underlie these effects is limited. We used motion perception, a percept with relatively well known properties and underlying neural mechanisms to investigate tACS mechani...
متن کاملMotion aftereffects and retinal motion.
Two experiments are described in which it was investigated whether the adaptation on which motion aftereffects (MAEs) are based is a response to retinal image motion alone or to the motion signal derived from the process which combines the image motion signal with information about eye movement (corollary discharge). In both experiments observers either fixated a stationary point or tracked a v...
متن کاملVisual motion aftereffects arise from a cascade of two isomorphic adaptation mechanisms.
Prolonged exposure to a moving stimulus can substantially alter the perceived velocity (both speed and direction) of subsequently presented stimuli. Here, we show that these changes can be parsimoniously explained with a model that combines the effects of two isomorphic adaptation mechanisms, one nondirectional and one directional. Each produces a pattern of velocity biases that serves as an ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Vision Research
سال: 1998
ISSN: 0042-6989
DOI: 10.1016/s0042-6989(97)00196-x