Visual representations of temporal context
نویسندگان
چکیده
منابع مشابه
Improving Word Representations via Global Visual Context
Visually grounded semantics is a very important aspect in word representation, largely due to its potential to improve many NLP tasks such as information retrieval, text classification and analysis. We present a new distributed word learning framework which 1) learns word embeddings that better capture the visually grounded semantics by unifying local document context and global visual context,...
متن کاملInvariant representations of visual patterns in a temporal population code.
Mammalian visual systems are characterized by their ability to recognize stimuli invariant to various transformations. Here, we investigate the hypothesis that this ability is achieved by the temporal encoding of visual stimuli. By using a model of a cortical network, we show that this encoding is invariant to several transformations and robust with respect to stimulus variability. Furthermore,...
متن کاملScene representations in parahippocampal cortex depend on temporal context.
Human perception is supported by regions of ventral visual cortex that become active when specific types of information appear in the environment. This coupling has led to a common assumption in cognitive neuroscience that stimulus-evoked activity in these regions only reflects information about the current stimulus. Here we challenge this assumption for how scenes are represented in a scene-se...
متن کاملImproving Tweet Representations Using Temporal and User Context
In this work we propose a novel representation learning model which computes semantic representations for tweets accurately. Our model systematically exploits the chronologically adjacent tweets (‘context’) from users’ Twitter timelines for this task. Further, we make our model user-aware so that it can do well in modeling the target tweet by exploiting the rich knowledge about the user such as...
متن کاملCortexNet: a Generic Network Family for Robust Visual Temporal Representations
In the past five years we have observed the rise of incredibly well performing feed-forward neural networks trained supervisedly for vision related tasks. These models have achieved super-human performance on object recognition, localisation, and detection in still images. However, there is a need to identify the best strategy to employ these networks with temporal visual inputs and obtain a ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Vision
سال: 2011
ISSN: 1534-7362
DOI: 10.1167/11.11.823