Wave stability in isotropic temperature-rate-dependent thermoelasticity
نویسندگان
چکیده
منابع مشابه
Spatial stability in linear thermoelasticity
Uniqueness and spatial stability are investigated for smooth solutions to boundary value problems in non-classical linearised and linear thermoelasticity subject to certain conditions on material coefficients. Uniqueness is derived for standard boundary conditions on bounded regions using a generalisation of Kirchhoff’s method. Spatial stability is discussed for the semi-infinite prismatic cyli...
متن کاملThermoelasticity and generalized thermoelasticity viewed as wave hierarchies
It is seen how to write the standard form of the four partial differential equations in four unknowns of anisotropic thermoelasticity as a single equation in one variable, in terms of isothermal and isentropic wave operators. This equation, of diffusive type, is of the eighth order in the space derivatives and seventh order in the time derivatives and so is parabolic in character. After having ...
متن کاملGeneration of Love Wave in a Media with Temperature Dependent Properties Over a Heterogeneous Substratum
The present paper deals with the generation of Love waves in a layer of finite thickness over an initially stressed heterogeneous semi-infinite media. The rigidity and density of the layer are functions of temperature, i.e. they are temperature dependent. The lower substratum is an initially stressed medium and its rigidity and density vary linearly with the depth. The frequency relation of Lo...
متن کاملAnalysis of Wave Motion in a Micropolar Transversely Isotropic Medium
The present investigation deals with the propagation of waves in a micropolar transversely isotropic layer. Secular equations for symmetric and skew-symmetric modes of wave propagation in completely separate terms are derived. The amplitudes of displacements and microrotation were also obtained. Finally, the numerical solution was carried out for aluminium epoxy material and the dispersion curv...
متن کاملThermoelastic Vibration of Temperature-Dependent Nanobeams Due to Rectified Sine Wave Heating—A State Space Approach
In this study, the second type of Green and Naghdi's thermoelasticity theory is applied to present the vibration of a nanobeam subjected to rectified sine wave heating based upon the nonlocal thermoelasticity theory. Both Young's modulus and thermal conductivity are considered to be linear functions of the temperature. The Laplace transform domain is adopted to solve the governing partial diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics and Mechanics of Solids
سال: 2016
ISSN: 1081-2865,1741-3028
DOI: 10.1177/1081286516638778