Weakly viewing lattice points
نویسندگان
چکیده
منابع مشابه
Lattice Points inside Lattice Polytopes
We show that, for any lattice polytope P ⊂ R, the set int(P ) ∩ lZ (provided it is non-empty) contains a point whose coefficient of asymmetry with respect to P is at most 8d · (8l+7) 2d+1 . If, moreover, P is a simplex, then this bound can be improved to 9 · (8l+ 7) d+1 . This implies that the maximum volume of a lattice polytope P ⊂ R d containing exactly k ≥ 1 points of lZ in its interior, is...
متن کاملGeneralized weakly contractive multivalued mappings and common fixed points
In this paper we introduce the concept of generalized weakly contractiveness for a pair of multivalued mappings in a metric space. We then prove the existence of a common fixed point for such mappings in a complete metric space. Our result generalizes the corresponding results for single valued mappings proved by Zhang and Song [14], as well as those proved by D. Doric [4].
متن کاملSome Ways of Distribution Viewing Points for Generating Viewing Representation
1. Determination of recognizable object types. 2. Definition of identification task. 3. Generation of viewing models for each object that should be identified 4. Creation of database with all views of all models. 5. Acquisition of scene space data and visual data. 6. Isolation of scene elements and transformation of those elements to model structures stored in the database. 7. Identification of...
متن کاملLattice Points in Lattice Polytopes
We show that, for any lattice polytope P ⊂ R, the set int(P ) ∩lZ (provided it is non-empty) contains a point whose coefficient ofasymmetry with respect to P is at most 8d · (8l+7)2d+1. If, moreover,P is a simplex, then this bound can be improved to 8 · (8l+ 7)d+1.As an application, we deduce new upper bounds on the volume ofa lattice polytope, given its ...
متن کاملProjecting Lattice Polytopes Without Interior Lattice Points
We show that up to unimodular equivalence there are only finitely many d-dimensional lattice polytopes without interior lattice points that do not admit a lattice projection onto a (d− 1)-dimensional lattice polytope without interior lattice points. This was conjectured by Treutlein. As an immediate corollary, we get a short proof of a recent result of Averkov, Wagner &Weismantel, namely the fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Involve, a Journal of Mathematics
سال: 2010
ISSN: 1944-4176
DOI: 10.2140/involve.2010.3.9