WEIGHTED AND TWO-STAGE LEAST SQUARES ESTIMATION OF SEMIPARAMETRIC TRUNCATED REGRESSION MODELS
نویسندگان
چکیده
منابع مشابه
Weighted and Two-stage Least Squares Estimation of Semiparametric Truncated Regression Models
This paper provides a root-n consistent, asymptotically normal weighted least squares estimator of the coefficients in a truncated regression model. The distribution of the errors is unknown and permits general forms of unknown heteroskedasticity. Also provided is an instrumental variables based two stage least squares estimator for this model, which can be used when some regressors are endogen...
متن کاملWeighted and Two Stage Least Squares Estimation of Semiparametric Censored and Truncated Regressions
This paper provides a root-n consistent, asymptotically normal weighted least squares estimator of the coeecients in the censored or truncated regression model with a xed censoring point. The distribution of the errors is unknown and permits general forms of unknown heteroscedasticity. Also provided is an instrumental variables based two stage least squares estimator for these models, which can...
متن کاملHourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression
This paper presents a robust hourly cooling-load forecasting method based on time-indexed autoregressive with exogenous inputs (ARX) models, in which the coefficients are estimated through a two-stage weighted least squares regression. The prediction method includes a combination of two separate time-indexed ARX models to improve prediction accuracy of the cooling load over different forecastin...
متن کاملEstimation of Linear Vectorial Semiparametric Models by Least Squares
Abstract. Semiparametric model is a statistical model consisting of both parametric and nonparametric components, which can be looked on as a mixture model. The theoretical properties of this model have been studied extensively, such as large-sample property. However, most researches are based on scalar value, in which the dimension of the observation is one at each moment. In the fields of spa...
متن کاملFaster SVD-Truncated Least-Squares Regression
We develop a fast algorithm for computing the “SVD-truncated” regularized solution to the leastsquares problem: minx ‖Ax − b‖2. Let Ak of rank k be the best rank k matrix computed via the SVD of A. Then, the SVD-truncated regularized solution is: xk = A † k b. If A is m × n, then, it takes O(mnmin{m,n}) time to compute xk using the SVD of A. We give an approximation algorithm for xk which const...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Econometric Theory
سال: 2007
ISSN: 0266-4666,1469-4360
DOI: 10.1017/s0266466607070132