Weighted inequalities for a vector-valued strong maximal function
نویسندگان
چکیده
منابع مشابه
Sharp Weighted Inequalities for the Vector–valued Maximal Function
We prove in this paper some sharp weighted inequalities for the vector–valued maximal function Mq of Fefferman and Stein defined by Mqf(x) = ( ∞ ∑ i=1 (Mfi(x)) q )1/q , where M is the Hardy–Littlewood maximal function. As a consequence we derive the main result establishing that in the range 1 < q < p < ∞ there exists a constant C such that ∫ Rn Mqf(x) p w(x)dx ≤ C ∫ Rn |f(x)|qM [ p q ]+1 w(x)d...
متن کاملA Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملa sharp maximal function estimate for vector-valued multilinear singular integral operator
we establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. as an application, we obtain the $(l^p, l^q)$-norm inequality for vector-valued multilinear operators.
متن کاملa sharp maximal function estimate for vector-valued multilinear singular integral operator
we establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. as an application, we obtain the $(l^p, l^q)$-norm inequality for vector-valued multilinear operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1988
ISSN: 0035-7596
DOI: 10.1216/rmj-1988-18-3-565