Weighted weak type inqualities for maximal commutators Bochner-Riesz operator

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Type Estimates of the Maximal Quasiradial Bochner-riesz Operator on Certain Hardy Spaces

LetM be a real-valued n×nmatrix whose eigenvalues have positive real parts. Then we consider the dilation group {At}t>0 in R generated by the infinitesimal generator M , where At = exp(M log t) for t > 0. We introduce At-homogeneous distance functions ̺ defined on R; that is, ̺ : R → [0,∞) is a continuous function satisfying ̺(Atξ) = t̺(ξ) for all ξ ∈ R. One can refer to [3] and [11] for its fundam...

متن کامل

Improved Bounds for Bochner-riesz and Maximal Bochner-riesz Operators

In this note we improve the known L p-bounds for Bochner-Riesz operators and their maximal operators.

متن کامل

A Weighted Inequality for the Maximal Bochner-riesz Operator on R2 By

For/e ¿"(R2), let (7£/)"(£) = (1 |£|2«2)î/(£). It is a well-known theorem of Carleson and Sjölin that T" defines a bounded operator on Z,4 if a > 0. In this paper we obtain an explicit weighted inequality of the form / sup \T%f(x)\2w(x)dxti( \f\2Paw(x)dx, 0 0. This strengthens the above theorem of Carleson and Sjölin. The method gives information on the maximal...

متن کامل

Continuity for maximal commutator of Bochner-Riesz operators on some weighted Hardy spaces

which is the Bochner-Riesz operator (see [8]). Let E be the space E = {h : ‖h‖ = supr>0 |h(r)| <∞}, then, for each fixed x ∈ Rn, Bδ r ( f )(x) may be viewed as a mapping from [0,+∞) to E, and it is clear that Bδ ∗( f )(x) = ‖Bδ r ( f )(x)‖ and B ∗,b( f )(x) = ‖b(x)Bδ r ( f )(x)−Bδ r (b f )(x)‖. As well known, a classical result of Coifman et al. [4] proved that the commutator [b,T] generated by...

متن کامل

Weighted Inequalities for Bochner-riesz Means in the Plane

for some fixed large N0; we shall call such weights admissible. Rubio de Francia [11] showed that for every w ∈ L(R) there is a nonnegative W ∈ L(R) such that ‖W‖2 ≤ Cλ‖w‖2, Cλ < ∞ if λ > 0, and the analogous weighted norm inequality for S t holds uniformly in t. He used methods related to factorization theory of operators and the proof gave no information on how to construct w from W . In [3] ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hokkaido Mathematical Journal

سال: 2003

ISSN: 0385-4035

DOI: 10.14492/hokmj/1350652427