Well Control Optimization of Waterflooding Oilfield Based on Deep Neural Network

نویسندگان

چکیده

A well control optimization method is a key technology to adjust the flow direction of waterflooding and improve effect oilfield development. The existing mainly based on algorithms numerical simulators. In face larger models, longer periods, or reservoir models with large number optimized wells, there are many variables, which will cause algorithm convergence difficulties costs. application not good because problems time length, few comparison schemes, only fixed frequency. This paper proposes new multi-input deep neural network. takes production history data as main input saturation field auxiliary establishes network for learning, forming dynamic prediction model instead conventional Based model, series generation, prediction, comparison, carried out find best plan reservoir. calculation results examples show that (1) compared single-input multiple inputs has better accuracy, close simulator; (2) multiple-input fast speed, schemes effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Waterflooding identification of continental clastic reservoirs based on neural network

This article describes an approach based on artificial neural network to identify waterflooded zone of continental clastic reservoirs. For the logging sequence of waterflooded zone matching the characteristics of the continental oilfield, the application of artificial neural network algorithm is able to distinguish water layers, oil reservoirs and dry layers among reservoirs of waterflooded zon...

متن کامل

The Optimization of Forecasting ATMs Cash Demand of Iran Banking Network Using LSTM Deep Recursive Neural Network

One of the problems of the banking system is cash demand forecasting for ATMs (Automated Teller Machine). The correct prediction can lead to the profitability of the banking system for the following reasons and it will satisfy the customers of this banking system. Accuracy in this prediction are the main goal of this research. If an ATM faces a shortage of cash, it will face the decline of bank...

متن کامل

Face Recognition based on Deep Neural Network

In modern life, we see more techniques of biometric features recognition have been used to our surrounding life, especially the applications in telephones and laptops. These biometric recognition techniques contain face recognition, fingerprint recognition and iris recognition. Our work focuses on the face recognition problem and uses a deep learning method, convolutional neural network, to sol...

متن کامل

Short term electric load prediction based on deep neural network and wavelet transform and input selection

Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...

متن کامل

Anomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism

Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geofluids

سال: 2021

ISSN: ['1468-8115', '1468-8123']

DOI: https://doi.org/10.1155/2021/8873782