Well-dominated graphs without cycles of lengths4and5
نویسندگان
چکیده
منابع مشابه
Well-dominated graphs without cycles of lengths 4 and 5
Let G be a graph. A set S of vertices in G dominates the graph if every vertex of G is either in S or a neighbor of a vertex in S. Finding a minimal cardinality set which dominates the graph is an NP-complete problem. The graph G is well-dominated if all its minimal dominating sets are of the same cardinality. The complexity status of recognizing well-dominated graphs is not known. We show that...
متن کاملAlmost Well-Covered Graphs Without Short Cycles
We study graphs in which the maximum and the minimum sizes of a maximal independent set differ by exactly one. We call these graphs almost well-covered, in analogy with the class of well-covered graphs, in which all maximal independent sets have the same size. A characterization of graphs of girth at least 8 having exactly two different sizes of maximal independent sets due to Finbow, Hartnell,...
متن کاملLocally Well-Dominated and Locally Independent Well-Dominated Graphs
In this article we present characterizations of locally well-dominated graphs and locally independent well-dominated graphs, and a sufficient condition for a graph to be k-locally independent well-dominated. Using these results we show that the irredundance number, the domination number and the independent domination number can be computed in polynomial time within several classes of graphs, e....
متن کاملExtremal graphs without 4-cycles
We prove an upper bound for the number of edges a C4-free graph on q 2 + q vertices can contain for q even. This upper bound is achieved whenever there is an orthogonal polarity graph of a plane of even order q. Let n be a positive integer and G a graph. We define ex(n,G) to be the largest number of edges possible in a graph on n vertices that does not contain G as a subgraph; we call a graph o...
متن کاملDirected Graphs Without Short Cycles
For a directed graph G without loops or parallel edges, let β(G) denote the size of the smallest feedback arc set, i.e., the smallest subset X ⊂ E(G) such that G \X has no directed cycles. Let γ(G) be the number of unordered pairs of vertices of G which are not adjacent. We prove that every directed graph whose shortest directed cycle has length at least r ≥ 4 satisfies β(G) ≤ cγ(G)/r, where c ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2017
ISSN: 0012-365X
DOI: 10.1016/j.disc.2017.02.021