Well-posedness for parametric strong vector quasi-equilibrium problems with applications

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness for Parametric Vector Equilibrium Problems with Applications

In this paper, we study the parametric well-posedness for vector equilibrium problems and propose a generalized well-posed concept for equilibrium problems with equilibrium constraints (EPEC in short) in topological vector spaces setting. We show that under suitable conditions, the well-posedness defined by approximating solution nets is equivalent to the upper semicontinuity of the solution ma...

متن کامل

Tykhonov Well-Posedness for Quasi-Equilibrium Problems

We consider an extension of the notion of Tykhonov well-posedness for perturbed vector quasi-equilibrium problems. We establish some necessary and sufficient conditions for verifying these well-posedness properties. As for applications of our results, the Tykhonov well-posedness of vector variational-like inequalities and vector optimization problems are established

متن کامل

Well-posedness for Lexicographic Vector Equilibrium Problems

We consider lexicographic vector equilibrium problems in metric spaces. Sufficient conditions for a family of such problems to be (uniquely) well-posed at the reference point are established. As an application, we derive several results on well-posedness for a class of variational inequalities.

متن کامل

Title: Existence Theorems for Strong Vector Quasi-equilibrium Problems Existence Theorems for Strong Vector Quasi-equilibrium Problems

In this paper, the solvability of a class of strong vector quasi-equilibrium problems(for short, SVQEP) are studied in real topological vector space. By using the Kakutani-Fan-Glicksberg fixed point theorem, some existence theorems for SVQEP are obtained without any monotonicity assumption.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fixed Point Theory and Applications

سال: 2011

ISSN: 1687-1812

DOI: 10.1186/1687-1812-2011-62