Zebrafish scl functions independently in hematopoietic and endothelial development
نویسندگان
چکیده
منابع مشابه
Hematopoietic development in the zebrafish.
The model organism Danio rerio, also known as the zebrafish, is an excellent system for studying the developmental process of hematopoiesis. It is an ideal model for in vivo imaging, and it is useful for large-scale genetic screens. These have led to the discovery of previously unknown players in hematopoiesis, as well as helped our understanding of hematopoietic development. In this review, we...
متن کاملHhex and scl function in parallel to regulate early endothelial and blood differentiation in zebrafish.
During embryogenesis, endothelial and blood precursors are hypothesized to arise from a common progenitor, the hemangioblast. Several genes that affect the differentiation of, or are expressed early in, both the endothelial and blood lineages may in fact function at the level of the hemangioblast. For example, the zebrafish cloche mutation disrupts the differentiation of both endothelial and bl...
متن کاملSCL specifies hematopoietic mesoderm in Xenopus embryos.
Targeted gene disruption experiments in the mouse have demonstrated an absolute requirement for several transcription factors for the development of hematopoietic progenitors during embryogenesis. Disruption of the basic helix-loop-helix gene SCL (stem cell leukemia) causes a block early in the hematopoietic program with defects in all hematopoietic lineages. To understand how SCL participates ...
متن کاملDistinct Functions for Different scl Isoforms in Zebrafish Primitive and Definitive Hematopoiesis
The stem-cell leukemia (SCL, also known as TAL1) gene encodes a basic helix-loop-helix transcription factor that is essential for the initiation of primitive and definitive hematopoiesis, erythrocyte and megakarocyte differentiation, angiogenesis, and astrocyte development. Here we report that the zebrafish produces, through an alternative promoter site, a novel truncated scl (tal1) isoform, sc...
متن کاملSignaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition.
During development, the hematopoietic lineage transits through hemogenic endothelium, but the signaling pathways effecting this transition are incompletely characterized. Although the Hedgehog (Hh) pathway is hypothesized to play a role in patterning blood formation, early embryonic lethality of mice lacking Hh signaling precludes such analysis. To determine a role for Hh signaling in patternin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Developmental Biology
سال: 2005
ISSN: 0012-1606
DOI: 10.1016/j.ydbio.2004.09.004