Zeroes of partial sums of the zeta-function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeros of Partial Sums of the Riemann Zeta-function

We write ρX = βX + iγX for a typical zero of FX(s). The number of these up to height T we denote by NX(T ), and the number of these with βX ≥ σ by NX(σ, T ). We follow the convention that if T is the ordinate of a zero, then NX(T ), say, is defined as limǫ→0+ NX(T + ǫ). There are two natural ways to pose questions about NX(T ), NX(σ, T ), and the distribution of the zeros generally. We can fix ...

متن کامل

Linear relations of zeroes of the zeta-function

This article considers linear relations between the non-trivial zeroes of the Riemann zeta-function. The main application is an alternative disproof to Mertens’ conjecture by showing that lim supx→∞M(x)x −1/2 ≥ 1.6383, and lim infx→∞M(x)x−1/2 ≤ −1.6383.

متن کامل

On the zeroes of the Riemann zeta function

The paper formulates a condition such that if the condition holds the Riemann Hypothesis is true.

متن کامل

A Geometric Perspective on the Riemann Zeta Function’s Partial Sums

The Riemann Zeta Function, ζ(s), is an important complex function whose behavior has implications for the distribution of the prime numbers among the natural numbers. Most notably, the still unsolved Riemann Hypothesis, which states that all non-trivial zeros of the zeta function have real part one-half, would imply the most regular distribution of primes possible in the context of current theo...

متن کامل

Zeroes of Zeta Functions and Symmetry

Hilbert and Polya suggested that there might be a natural spectral interpretation of the zeroes of the Riemann Zeta function. While at the time there was little evidence for this, today the evidence is quite convincing. Firstly, there are the “function field” analogues, that is zeta functions of curves over finite fields and their generalizations. For these a spectral interpretation for their z...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: LMS Journal of Computation and Mathematics

سال: 2016

ISSN: 1461-1570

DOI: 10.1112/s1461157015000340